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samples prepared by hot-pressing or sintering method 
contain residual pores along the interstices of adja­
cent mineral grains; the porosity may frequently be 
as high as 5 to 10%, although values of a few percent 
or less are more common. When acoustic measure­
ments are made on porous polycrystalline samples, 
the values must be corrected before being used to 
predict the intrinsic behavior of material deep in the 
Earth, which undoubtedly is pore-free. 

Effects of porosity upon pressure derivatives of 
the elastic moduli are complicated not only by the 
manner in which the porosity-sensitive moduli change 
with pressure, but also by the change of porosity 
with pressure. In an earlier discussion of this problem, 
Chung and Simmons [I 7, p. 5318] suggested that for 
pOfJsity less than 1% (d lnM/dp) = (d InMo/dp) is 
a good approximation (where M is a modulus and the 
superscript (0) refers to the value at zero-porosity . 
Based on Mackenzie's work [18] ,Anderson et al. [19, 
p. 507] found (by differentiating Mackenzie's expres­
sion for the bulk modulus) an expression for dKs ° /dp 
in terms of dKs/dp measured on a porous sample . . 
Walsh [20] in his recent analysis on the same problem 
pointed out that Mackenzie [18] developed his theory 
using linear elasticity in which Ks ° and J.l0 are indepen­
dent of stress and that a simple differentiation of 
Mackenzie's expression as was done in [19] could not 
result in a correct expression for dKs ° /dp. Walsh [20] 
then used Murnaghan's theory of finite strains to find 
expressions for dKS ° /dp in terms of the second and 
third-order elastic constants of the solid material. Use 
of Walsh's expressions for porous materials requires 
these high-order elastic constants of solid under dis­
cussion; frequent unavailability of these constants 
limits further application. 

In this paper, the writer suggests a practical method 
for correcting porosity effects on pressure coefficients 
of the elastic parameters of porous materials. The pre­
sent scheme has been successfully tested with two 
independent sets of porous forsterite samples having 
different porosities. The scheme was also tested with 
porous corundum and ru tile samples successfully. The 
scheme described here may be a useful tool for experi­
mentalists working with polycrystalline materials . 

2. Scheme 

The quantity of interest in the acoustic experi­
ments, in which pressure is a variable, is the fi rst 
derivative of an isotropic elastic modulus M with 
respect to hydrostatic pressure evaluated at zero­
pressure; this will be denoted here after as 
{dM/dp} p=o. This derivative is an isothermal one, 
although the velocity-of-sound measurements involve 
an adiabatic process. Thus, the acoustic data resulting 
from such experiments are thermodynamically mixed 
isothermal pressure derivatives of the adiabatic modu­
lus. For a modulus Mj , where the subscript j refers to 
either compressional or shear mode, we have 

(I) 

where p and I are the density and length of the speci­
men at the initial condition, respectively, and fj is 
the corrected pulse repetition frequency in the jth 
mode . Taking logarithms and differentiating both 
sides with respect to pressure, 

Since (d In Q/dp) = (d In V/dp)/3 for the isotropic 
medium and (d In p/dp) = - Cd In V/dp) == I/Kr , 
where V is the volume, and after evaluating the deri­
vatives at zero-pressure, we have 

elM· M· 
{ dp' } = {-'- } + {Mj Rj } (3) 

p=o 3 Kr p=o p=o 

where Rj = d(fjp/fjo)2/dp and this is obtained by 
fitting (fjp/fjo)2 versus pressure data to a straight 
line by the method of least squares. Kr is the iso­
thermal bulk modulus and it is related to the adi­
abatic bulk modulus KS by Kr = KS/(l + exT'YG)' 
where ex is the coefficient of volume expansion. 
'YG is Griineisen's ratio, and T is temperature in OK. 
Thus it is clear from eq. (3) that the measurements 
of isotropic compressional and shear velocities of 
sound at a reference temperature and ultrasonic 
pulse-repetition-frequencies corresponding to these 
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velocities as a function of pressure (also at the reference 
temperature) yield the values of {dMj/dp } p=o-

The use of eq. (3) for porous materials involves a 
two-step correction: 

(a) For a polycrystalline sample with a known poro­
sity, Vp and Vs are measured in the usual way . The 
elastic properties as one measures on a polycrystalline 
sample, are the apparent properties of the sample; they 
mayor may not be corresponding to the intrinsic 
elastic properties of the sample being studied. Certain 
hot-pressed samples often contain microcracks, for 
example, and effects of these microcracks on the elas­
tic properties of the samples should receive the careful 
attention of the investigator. Helpful references to these 
effects are Brace [21] , Walsh [22] , and Nur and Sim­
mons [23] . The most commonly practised method of 
finding the intrinsic elastic properties of such samples 
is to measure both P and S velocities as a function of 
hydrostatic pressure to about 7 to 10 kb, as is frequen­
tly done (see, for example [13 ; 16, p. 2743]); from 
these ~(P) data, velocities at zero-pressure are found 
by extrapolation of high-pressure results back to the 
zero-pressure point. These velocities found at the 
origin in this manner corresponJ to the zero-pressure 
values for that porous sample ; from these data, isotropic 
elastic properties at zero-porosity can be evaluated. 
Weil [24, p. 217] and Walsh [22] discussed how elastic 
properties of non-porous polycrystalline materials can 
be evaluated from the elastic data obtained on a porous 
sample. The Weil-Hashin expressions for the shear and 
bulk moduli with constants k 1 and k2 , which are a 
function only of Poisson's ratio os ' are recommended. 
Mackenzie's [18] expressions can be used as well. Thus, 
for as = aso , we obtain Jio ,KSo , Vp 0, and Vso. 

(b) It was observed [17 , 26] that the quantity R j in 
the second term of eq. (3) is independent to the first 
order of small porosity at a pressure range of 2 to 10 kb , 
a range most commonly utilized in acoustic experiments. 
The theoretical justification for this observation is dif­
ficult , if not impossible , without making assumptions 
as to size, shape , and orientations of pores in the poly­
crystalline aggregate. In addition, even for a pore-free 
aggregate, the task of determining the microsco,ic 
state of stress distribution is hopelessly difficult, due 
to numerous superimposed effects which originate from 
the properties of the constituting mineral grains and 
from the boundaries between them. For these reasons , 
no satisfactory general model for the elasticity of po-

rous materials has yet been developed, in spite of nu­
merous investigations (see for a review [24, p. 217; 22]). 
An earlier analysis [17, p. 5320] , based on Walsh's 
work for the rate of change of pores with pressure, 
indicates that, for a polycrystalline corundum with a 
porosity 0 = 0.3%, the quantity (dO /dp) estimated at 
the origin is in the order of -3 x 10-6 per kb. This 
value is small, and it is well within the scatter of 
most experimental data; thus, suggesting the observa­
tion may be justified for small properties (say 0 less 
than one or two percent). 

Additional support for the observation made in 
the earlier paragraph follows from the work of Walsh 
[22] and Brace [21]. As shown by Walsh and Brace, 
the pressure p* required to close a cavity having the 
aspect ratio a is 

p*=aY (4) 

where Y is Young's modulus of the solid material 
surrounding the cavity. The values of Young's modu­
lus for oxides and silicates of interest to geophysics 
are at least 1000 kb or greater (see Birch [25]). If 
pores are spherical, as in many poly crystalline sam­
ples prepared by sintering or by hot-pressing, the 
aspect ratio 0: is one; this means then that the pres­
sure required to close the pores is 1000 kb or higher, 
depending upon the stiffness of the materials. This 
is a very high pressure as compared to the range of 
pressure involved in acoustic experiments. It would 
appear then that an application of 2 to 10 kb pres­
sure to a sample containing spherical pores is too 
small a pressure for pore closure to affect the quan­
tity Rj • 

Thus, with experimental quantity Rj determined 
on a porous sample, one should be able to fmd the 
pressure coefficients of compressional , shear, and 
bulk moduli of the non-porous material from eqs. (5) 
and (6). 

" 

+ {M/ . dpd (fjp/fjO)2} 
p=o 

(5) 


